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Abstract 

We find explicit expressions for the concentration and potential as functions of time during discharge in three different models of a cell 
with a porous metal hydride electrode. The effect of convection is studied and estimates of the convergence rate to the steady state are given. 
An example of an electric-vehicle battery application is presented. 
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1. Introduct ion 

Porous metal hydride electrodes are nowadays widely used 
in electrochemical cells. A battery with a metal hydride elec- 
trode has high energy density and for instance in an electric- 
vehicle application one of the greatest advantages of metal 
hydride batteries is the low weight compared to the traditional 
lead/acid battery. See Ref  [ 1 ] for an overview of metal 
hydride electrodes. 

A typical metal hydride electrode consists of spherical 
metal hydride particles imbedded in a conducting material 
resulting in a porous structure. When the electrode is 
immersed in the electrolyte the void volume is filled. The 
operation of a metal hydride electrode in a battery is based 
on two reactions. The reaction 

MHx ~ xM - H~ 

is a dehydridization reaction, where hydrogen is released 
from the hydride phase forming adsorbed hydrogen atoms. 
Current is generated in the electrochemical reaction 

x M  - Haa~ + x O H  - ~ x e -  + xH20 + xM 

where the adsorbed hydrogen reacts with hydroxide ions pro- 
ducing electrons and water. Combining these two we get the 
total reaction 

MHx+xOH-  ~ x e -  + x H 2 0 + x M  

Although metal hydride alloys and electrodes have recently 
been widely studied in the literature there are only a few 
models concerning their electrochemical behavior. In Ref. 
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[2] a complete cell with a fiat plate hydrogen electrode is 
theoretically analyzed. A model with a thick metal hydride 
electrode is presented in Refs. [3,4] but this model, however, 
ignores the diffusion and convection in the electrolyte and 
constant concentration and steady state throughout the cell is 
assumed. In reality these assumptions are not necessarily 
valid. For example, the porous material in the cell prevents 
spontaneous mixing of the electrolyte which means that con- 
centration variations can exist even in the steady state. Since 
the concentration is one of the crucial factors affecting the 
corrosion and the life time of a cell it is important to know 
the concentration distribution inside the electrodes. To 
increase the life time of electrodes we want to find methods 
to prevent too high concentrations. One way to achieve this 
is to employ convection through the cell. Convection can of 
course be produced externally with different arrangements, 
but a much more interesting case, however, is the natural 
convection inside the cell caused, forinstance, by temperature 
gradients. 

In this paper we consider mass transfer in the presence of 
a porous metal hydride electrode and convection parallel to 
the motion of ions in the cell. Electrode phenomena and 
interfacial effects such as electric double layers and surface 
overpotential are neglected. 

Three different electrochemical systems are described. In 
all these systems a porous thick metal hydride electrode is 
placed next to a thin counter electrode. The rest of  the system 
is filled with passive medium having the same porosity and 
tortuosity as the metal hydride. The three cases are: (i) closed 
cell with no convection; (ii) closed loop, and (iii) an infinite 
tube. In the last two cases we include convection. 
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In each case, we derive explicit expressions for the con- 
centration and potential as functions of time as well as in the 
steady state. The convergence rate to the steady state is esti- 
mated and the effect of convection is investigated. 

In a forthcoming article we include reaction dynamics of 
the metal hydride electrode with hydrogen diffusion in metal 
hydride particles and optimize the structure of the porous 
electrode. 

2. Methods and models 

2.1. Preliminaries 

We use the Nernst--Planck equation [5] to describe the 
flux density j / o f  an ion species i. In the presence of a porous 
medium with porosity e the equation takes the form 

E1 .So-free 
Jl = -- et'SD~ '~c V c i - ' ~ - " - - ~ -  V~b+ vici ( I ) 

P 

where c~ is the concentration of the ion species i in the solution 
phase, v i is the superficial bulk fluid velocity and ~b is the 
potential of the electric field. D[~ '~c is the diffusion coefficient 
and o'y r~ is the signed ionic conductivity of the species i in 
the absence of the porous medium. We use the factor e j 5 to 
compensate the effects of porosity and tortuosity as in Ref. 
[6]. The terms on the right-hand side of Eq. ( I ) model the 
contributions of  diffusion, migration and convection, respec- 
tively. The migration term is often presented as 

j l  " ~ a ° "  = - Z i  Fe 1"Su[~cci V~b (2) 

where z,F is the charge per mole and u[ ~ is the mobility of 
the species i without the porous medium. Both forms of the 
migration term will be used later. 

To keep notation short we introduce 

D, = e 15D[~c 

Or i ~ ~1.50.[ree 

and 

E I .Sufrec /'4i ~ i 

Strictly speaking, the Nernst-Planck equations should be 
used to describe mass transfer only in dilute solutions but we 
apply them due to their simplicity and the fact that they are 
widely used in electrochemical literature. 

We consider a binary electrolyte of two species of charged 
ions with opposite unit charges and nonionized solvent. We 
make the customary electroneutrality assumption and denote 
the common concentration by c. The superscripts ' + '  and 
• - '  of the diffusion coefficients, ionic conductivities, mobil- 
ities and convection velocities refer to positive and negative 
ions, respectively. From now on we use a convention where 
both ionic conductivities are positive. The mass balance equa- 
tions can then be written as 

ECt=--~'(--D-~C-{--~ "~ ~(~-t" lP- C)-I"R- (3) 

O- + 

where the inhomogeneous terms R ÷ and R -  are production 
rates per unit volume of positive and negative ions, respec- 
tively. Generally, the diffusion coefficients, ionic conductiv- 
ities, mobilities as well as convection velocities depend on 
concentration. 

Our aim is to use analytical methods as long as possible 
and thus we simplify Eqs. (3) and (4) considerably. First of 
all, we assume that the concentration and electric potential 
vary only in the axial direction of  the cell. To keep the treat- 
ment simple we use the velocity of the solvent as the convec- 
tion velocity for all ion species. This is a good approximation 
for dilute solutions. Furthermore, we ignore the viscous 
forces and assume that the solvent velocity is axial and con- 
stant throughout the cell. The (scalar) solvent velocity is 
denoted by u. Hence Eqs. ( I ) - ( 4 )  reduce to a one-dimen- 
sional form. By assuming that the porosity is constant 
throughout the cell we avoid discontinuities in the coefficients 
of our mass balance equations. The effect of axial dispersion 
on diffusion coefficients has been neglected. Finally, we 
assume that the cell is discharged with constant current and 
that all the coefficients and the initial state are constant. 

We apply two different models for the migration term. 
When the concentration variations in the cell are small or a 
simple model is desired we use 

o r ±  
j~  . . . . . .  ~:--~-4,x (5) 

where the ionic conductivities or ± are constants. If  the con- 
centration is expected to vary significantly it is better to define 

j,~ig,~ao, = T.Fu~ctbx (6) 

where the mobilities u ± are constant but there is a linear 
dependence on concentration. 

When modelling electrochemical cells it is customary to 
assume that there are concentration variations only in thin 
boundary layers next to the electrodes and that the bulk of  
the electrolyte remains in the constant initial state. In our 
application, however, porous medium fills the whole cell and 
thus we assume that there are neither spontaneous mixing nor 
other processes that would even out concentration differences 
in the electrolyte. Hence we apply Eqs. (3) and (4) through- 
out the cell, not only near the electrodes. 

Usually the inhomogeneous terms R + and R -  arise from 
chemical reactions taking place in the electrolyte. Now there 
are no chemical reactions in the electrolyte itself but O H -  
ions are produced at the counter electrode and destroyed on 
the surface of the porous metal hydride electrode. Thus we 
can use R + - + + R-  -- Rs~urce - RsTmk to model - -  Rsource - Rsink and 
the electrodes as in Ref. [6]. 

Accordingly the porous metal hydride electrode appears 
as a sink term for O H -  ions in Eq. (3) in all our three cases. 
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On the other hand, it is less conventional to use the same 
approach in describing the thin counter electrode with a 
source term instead of  a boundary condition. This approach 
is very attractive due to its simplicity. We do not have to pay 
attention to directing the ions forming at the counter electrode 
to up or down stream. Instead, the ion flux from the counter 
electrode is controlled by diffusion, migration and convection 
in the same way as everywhere else in the cell. 

Since the positive ions are passive and do not take part in 
reactions we have R + = 0 everywhere. 

During discharge hydrogen is consumed according to the 
local reaction rate which varies throughout the electrode. The 
reaction rate depends, among other things, on the concentra- 
tion and potential of  the electrolyte, the potential of the metal 
hydride and the concentration of  the hydrogen atoms on the 
surface of the metal hydride particles [4]. In optimizing the 
performance of the electrode one goal is to ensure that hydro- 
gen is consumed uniformly. Otherwise some parts of the 
electrode would become passive before the total hydrogen 
storage is exhausted and thus the efficiency of the battery 
would decrease towards the end of  the discharge. 

Thus we assume that all the O H -  ions that are produced 
on the counter e]ectrede react on the metal hydride electrode 
and that this reaction rate is uniform throughout the metal 
hydride, corresponding to the optimal operation of the 
electrode. 

Hence, if the counter electrode is located at x = x, and the 
metal hydride electrode occupies the region between the 
points x=x~ and x =x ,  we set 

Rs~nk = J -  X(~, x d 
x~- xl 

where 

Xo(X) =(10' i f x ~ D  
, otherwise 

is the characteristic function of  the interval D and J -  is the 
current density at the counter electrode expressed in flux 
density units mol /m 2 s. Then 

] RsTnk(~) dsC=J - 

_ ® c ( 0 ,  x )  = Co 

as desired. In the closed cell case the counter electrode is for 0~x__</. 
modelled as a boundary condition 

j - I  . . . .  = J -  

so that R~urcc = 0 but in the other two cases we set 

where 6~(x) = 6 ( x - x 0  is a Dirac delta functional centered 
at x = x~. That is, the counter electrode is described as a point- 
like source of  O H -  ions. 

In the following sections we frequently use the Heaviside 
step function h defined by 

29 

i f x < O  
h(x)= 011 if x > 0  

and abbreviate by(x) = h ( x -  y). 
Note that according to our assumptions the ratio of the 

ionic conductivities of positive and negative ions is constant. 
Then the potential gradient can be eliminated from Eqs. (3) 
and (4) and the concentration depends only on the ratio of 
the migration terms but not on their explicit form. 

In all models presented below the negative ions move from 
left to right in the metal hydride electrode so emt the current 
is in the opposite direction. 

2.2. Closed cell without convection 

We consider a cell with a porous metal hydride electrode 
filling the region (0,1] and a thin counter electrode placed at 
x = O, see Fig. 1. We assume that there is no flow through the 
boundaries at x ffi 0 and x = l and that there is no convection 
in the cell so that only diffusion and migration contribute to 
the mass transport. 

Then the concentration and potential satisfy the equations 

ec ~x °'- dPx) J- - -D-c~+-  F -.-f ( 7 )  

a a [  + ~+  \ ~ec=-~-D cx-7,~ ) <g) 

for u < x < i, t > 0 with the boundary conditions 

--o . o )  
~ r ~ ] ~ o  

O- + 

that hold for all t >  0. The initial condition is 

(13) 

Fig. I. Closed cell. 
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Nc,te that according to the boundary conditions (9) and 
( I i ) and the inhomogeneous sink term in Eq. (7) the current 
f~d into the electrolyte at x = 0 is uniformly gathered by the 
porous metal hydride electrode on the interval (0, l) so thai 
the flux of the negative ions vanishes at x = I. On the other 
hand, the boundary conditions (10) and (12) and Eq. (8) 
are formulated so that the positive ions do not react on the 
electrodes. 

For later use, we derive an equivalent set of boundary 
conditions by solving the Eqs. (9) - (12)  for the concentra- 
tion and potential gradlents at the boundaries: 

Or+j- 
cxlx=o = D~o " - + D - O r  + (14) 

cxlx=t=0 (15) 

FD+J - 
~b~l~=o D+or_ + O_or + (16) 

~b~l~=,=0 (17) 

From Eqs.(7) and (8) and the boundary conditions (14) 
and (15) we obtain after some manipulations 

t+ j  - 
ect = Dc~ - - -  ( 18 ) 

l 

with 

t+ j  - 
c~l~=o = - (19) 

D 

c~l~=l--0 (20) 

where 

D - ~ +  +D+or - 
D 

Or+q-Or - 

is the integral diffusion coefficient and 

Or+ 
t + ~ ~  

Or+ + O r -  

is the transference number of positive ions. 
In order to use the separation of variables method [ 7 ] for 

solving the system Eqs. (18)-(20) with the initial condition 
(13) we make a change of the unknown. We define 

t+J - x2 +t+J - 
. = C - T F  f f  ---ff- ~ 

Then the original problem transforms to the homogeneous 
diffusion equation 

eu, = Du~ ( 21 ) 

with the homogeneous bount~.zy conditions 

uxlx=o=u~lx=l=O (22) 

and the initial condition 

t+J - ~ t+J - 
u(O,x) = Co- 2---~ x~ + - - - ~  x (23) 

The transformed problem (21 )-(23)  is easily solved and the 
solution of the original probtem is then given by 

t + J - l r l  x I x  2 
c(t, x) = Co+ ' - " -~  L ~ - i + ~  le 

® 1 [ nZct2O~ [n~r'~q 
2 ~ ~ exnl - ~ t l  cos l - -x  I/  (24) 

,,__z:'tn't# "k l e  1 t , l  ]_] 

Here, as well as in the two other cases, the partial differential 
equation can alternatively be solved with Laplace transforms 
but the solution is again expressed in terms of a series. 

With the constant ionic conductivities (5), by subtracting 
Eq. (8) from Eq. (7) and rearranging the terms, we obtain 

a_~x ~ -  + Or + ' J -  6x) = ( D -  - O  + )c~,----f- (25) 

Then, integrating Eq. (25) twice with respect to x and using 
the boundary conditions ( 14)-(17) yields 

qb(t,x) = - - ~ +  [ ( D -  - D + ) c ( t , x )  + J - ( x - ~ ) ]  

(26) 

Similarly, using the linear concentration dependence (6) 
for the ionic conductivities leads to 

1 [ in.C(t, x) 
dp(t,x) F ( u -  +u +) ( D - - D + )  c(t ,O) 

J - ~  l - ~  
+ " T ! c ( - ~ ,  ~ d~] (27) 

From Eq. (24) it is easy to see that the steady state solution 
defined by C(x) = limt ~ ®c(t, x) is 

t + J - l [ l  x lx2~ 
C(x) =co + - ~ - ~ - - i + ~ - ~ )  (28) 

and that for a l l x e  [0,1] 

[2t+J-I  ® 1'~ [ lr2D ~ 'c(', x) - C(x) ex - t ) 

4t+J- l  [ rt2D ~--~- ex~-~t I 
That is, the concentration converges uniformly to the steady 
state with exponential rate. Note that shortening the electrode, 
i.e. making I smaller, makes the convergence faster. 

Expressions for the steady state potentials can be derived 
by substituting the steady state concentration given by Eq. 
(28) into Eqs. (26) and (27). 

2.3. Circular cell with convection 

The reason for studying a circular cell is thai we wanted to 
find a simple model compatible with forced or natural con- 
vection through the electrodes. The opposite ends of a closed 
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Pormm ~ ~ ®lec l ro~ 
¢llUlmclr ellZCllro • 

i~lsslve porous i m ~ l h l l  

/ 

Fig. 2. Circular cell. 

cell like the one described previously are connected with a 
tube making electrolyte circulation through the electrodes 
possible. Below we present an idealization of this 
arrangement. 

We consider an imaginary electrochemical system con- 
sisting of a thin tube in which there are two electrodes 
(Fig. 2). The metal hydride electrode occupies the interval 
(xt, x2] and the infinitely thin counter electrode is placed at 
xffix~. The ends of the tube are connected and it forms a 
closed loop. Thus there are two routes for the current to pass 
from one electrode to the other. 

The mathematical model is as follows. The concentration 
c and potential ~b satisfy the equations 

0 _ o r -  - X ( x ~ . x 2 1  

(29) 

(30) 
a t  + o -+ +~ 

+c,= -gt-D c+-7,++c,,1 

for O<x<L and t>0 .  
Due to the circular nature of the cell the boundary condi- 

tions are periodic: 

c(t,O) =c( t ,L)  (31) 

0x(t, 0) = 0x(t, L) (32) 

and 

j - ( t , O ) = j - ( t , L ) ,  j+( t ,O)=j+( t ,L)  (33) 

where 

O ' -  
j -  = - D - cx + --~dpx + cu 

and 

O. + j+ = -D+ cx---f4,.+cv 

In other words, we require that the concentration, electric 
field and flux density are periodic. It follows from Eqs. (31 ) -  
(33) that the concentration derivative is periodic as well 

cx(t, O) =cx(t, L) (34) 

Finally we set an initial condition 

c(O,x)=co, O<x<L (35) 

Eliminating the migration terms from Eqs. (29) and (30) 
leads to an equation for the concentration 

The periodic boundary conditions (31) and (34) encour- 
age us to use a Fourier series method (see Ref. [7] ) m solve 
the problem involving Eqs.(36), (31), (34) and (35). We 
first solve the problem with zero initial condition and then 
add co to the solution to find the solution to the original 
problem. 

We define 
L l! 

c.(t) =Z cCt, 0 ex 

where n is an integer. Then Eq. (36) transforms to 

[ 4n2¢r 2 2mrXt 
¢C~(t) = - t D - - ~ +  uci--~--~,(t) 

+.  f 1  [ 2n~r ~ 
+ t  .J- ' l .[exl~-iTx,]  

i .2n~r .2.nTr 

whose solution with the transformed initial condition 
C,(0) = 0 is 

+ [ 4n27fl 2n~r~-I 1 

i .2nlr .2nlr 

-t-m -+'-T/;j.t 
fo,," m -~ O. 

We row determine Co. It follows from Eq. (30) and the 
boundary condition (33) that the mass is conserved 

L 

%,Od,oO 
o 

With the temporary zero initial condition this means that 
L 

f c( t. ~) d~=O 
o 

for t>0 .  Thus Co(t) =0. 
Then the solution to F_,q. (36) together with the boundary 

and initial conditions is given by a doubly infinite series 

[.2nzr c(,.~)=~o+ ~ c.(,)e~,Tx ! 
n =  - ~  
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Since the concentration is a real function we can also express 
it as: 

[a.( ,)  [2n'tr "~ . : 2 n i t  ~ 
c( t, x) =Co + .:, c°st--Cxj+ b"(t) s'n!--CxjJ 

(37) 

where 

a.(t) = 2  Re C.(t) 

t+J-L z 
4D2n37r 3 + v2L2n,a • 

xr, [ 4OnZct~t~ v2nrrt] 
L - exp[----Zv-- ;1 cos--z- ~j 

f r l  2nz, 1 

× t2D"~TLZ C ° S T  XI 2..rr(x2 _ xl ) 

[ .  2nlr . 2n'n" ~-[ L[- . 2n'tr ×ts'nTx~-s'nTx') l  I - -  S l n - - ~ - - X l  

i [ 2nzr 2nTr '~-['~ 
+ 2~(x:-x,) t c ° sT  x~-c°sTx'/jy 

[ 4Dn2cr 2 t~ v2nzr t f 
+ e x p , -  ~ ; )  s i n - - ' ~ - ;  t 2 D n  1r 

1 2n'n" 1 [ 2n'n" 
sin-~--Xl + - -  X -~ 2n'tr(x2ixl) tcos-z-x~ 

2nrr ~-I r I 2nlr 1 
-coTx,)j+v'-.LzcosTx, 2n~-(.r2_ x, ) 

X (sin~-~x2 -- sin~-~xl ) ] } )  (38) 

and 

b.(t) = - 2 Im C.(t)  

t+J-L z 
= 

4D2n3 ~ + ~L2n.tr 

X [ e x d _ 4 0 ' : ~  t~ sinV2n~" t 
L ' t  L 2 d L e 

f r l  2n~" 1 
×'t2°n~Zc°s-z -x' 2.~(x2-x,) 

[ 2n~" 2n~" ~q X tsin--~x2- sin-~xl)  j - v/_,[~ 2n'n" sin--~--xl 

: 
2nlr(Xz_Xt ) 

--[1 [ 4Dn21r 2 t~ u2ncrt- ! 

L -expv-27- - .  ; /cos-T- ;J  

x {2Dn~[  l sin2_nnL~_Xt 4 1 
2nTr(x2 - x. ) 

[ 2n'n" 2n'rr ~'] r l  2n~ 
×tco~-z-x2-co~-z-x,)j+v, Lzco~z-x, 

~- ×(sin~x2-sin~x,)]}] 
2n~r(x2-xj) 

(39) 

To find an expression for the potential when the ionic 
conducdvities are constant (model (5))  we subtract Eq. (29) 
from Eq. (30) to eliminate the time derivatives and convec- 
tion terms and solve for 4~. This yields 

"" tr +or- L ,o, 1, x X2--XI]! 

Integrating the previous equation with respect to x leads to 

F _ + 
dJx(t,x)=@~+@_ [(D - O  )G(t .x)  

" l - J -  x2  - - X  -1 X< ..... i(x) + A(t) 
X 2 - -  X 1 _1 

where A is an arbitrary function of t. Note that this expression 
is periodic for every choice of the integration constant A. To 
determine the potential we must thus find an extra condition 
for ~b. It is very natural to require that that the potential itself 
is periodic too 

~b(t, O) = ~b(t, L) 

Then 

j -  
A(t) = - ~ ( x 2 - x  t) 

for all t>O. With this choice we get, after an additional 
integration, 

F f 
~b(t, x) = ~ 7 +  - t (  D-  -D+)c( t ,  x) 

+ J- [~ ' (x -  x'-- 2 - (x~- ~,') 
L 2(x2--'~, .~ "X~x"'~l(x) 

i 
<40, +2(x2 

LL, / J  

When the ionic conductivities depend linearly on concen- 
tration (model (6))  the potential can be expressed as 
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{ c~(t,x) F(u+ +u_------- ~ ( D - - D + ) l n c ( t , x )  

"[i c( t. ~) ( x2-  x, ) X( . . . . .  j ( t~) d~ 

x2 

! x 2 - ~  )d6~, db c C ( t , ~ ) ( X 2 - - X l  Yl 
i de ~o ~(" ~)JJ 

From the series representation (37)-(39) it is easy to see 
that there is a steady state solution C(x)=l imt~c( t ,  x) 
given by 

E/~ I-(a"(~) c o s T x + b , ( ~  ) 2 n w  --7-[2nTr -] C(I ,X )  =Co + .=1 ' -  sin . x j  

where 

a,(oo) = lim a,(t) 

t+J-L 2 f I-1 2n'tr 
402nart 3 + v~L2nrr  " ~ 2 D n c k z c o s ~ x  ' 

1 [ . 2 . .  .2n-X'i 
2n~r(x.-x,) tsm--L'X2-Sm-'Fx']J 

r I 2nz, 1 
- v L L z  sin--~--x,-, 2n~(x2-x,)  

[ 2nw 2n'n" ~-]'1 x[oos-z-x~-coTx,/j ~ 

and 

b,,(~) = lira b.(t) 

t+J-L 2 ( r l  . 2n~r 
=4D2n3.tr 3 + l~L2n'tr ~ 2On'~z  s'n-'Fx, 

1 [ 2n~ 2nor X'] 
2n,~(£-x,) t,c°~-Fx"-c°s--i-x')J 

1 2nrr 1 
+ vL Z 2nlr(x2-xt) cos--~-xl 

[ 2n'n" 2net ~-]') × tsi.T~:-si.-E~,)j J, 
Furthermore, for all x~ [0, L]: 

[ 4D'n ~ t~ ,c(,.~) -C(x) , ~ exp[---V-;)  

(42) 

where K is a constant. That is, the solution converges uni- 
formly to the steady state with exponential rate. As before, 
decreasing the elec: ~ olyte volume, i.e. making L smaller, 
increases the convergence rate. 

Expressions for the steady state potentials can be derived 
by substituting the steady state concentration given by Eq. 
(42) into Eqs. (40) and (41). 

2.4. Infinite tube with convection 

This is a limiting case of the circular cell. If we let the 
length of the loop tend to infinity we obtain a straight infinite 
tube as the limit. This case is of interest beca, se it can be 
thought to model a cell connected to two big reservoirs of 
electrolyte. Contrary to the circular cell, there is no secondary 
route for the current. That is, all the current passes through 
the interval between the electrodes. 

An infinite tube is filled with electrolyte, a porous metal 
hydride electrode occupies the region (0, l] and a thin counter 
electrode is placed at x=O (Fig. 3). The concentration and 
potential satisfy the equations 

i) + or + 
6Ct= -~-~x ( -  D c.---F-*X + vc) (44) 

fo r  -- oo < x < o0 t > 0 w i th  the in i t ia l  condi t ion:  

c(0, x) = Co (45) 

for -oo <x<oo. 
We use Fourier transformations (see Ref. [7]) to solve 

the preblem involving Eqs. (4.3)--(45). Eliminating the 
migration terms from Eqs. (43) and (44) results in 

,c,=Oc~,-vex+ t + J - ( ~ - ~ )  (46) 

where D and t + are lefined as before. The solution of Eq. 
(46) with Eq. (45) is given by 

tl~ oo 
f f t+J - 

c ( t , x ) - co  = Jo _J®~/4"rrD--~t/e- ¢) 

exp{ Ix- e- ~ ' / ,- .) r~ . [ . ._  
"fL °°~;~ 

tl~ 
+ 1 

Jo LV4z'D¢ 

expr L (x-~)=-I ~ r A ~ + o - 4  - ~ J - ~  L e r ~ ]  

- e r ~ - - ~ / l ;  d, (47) 
X V 4 D r I J )  

where eft(. ) is the error function. 
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P s s s ~  p ~ s  m ~ a ~  

Fig. 3. I n f i n i t e  t u b e .  

Let us now take a look at the potential when the ionic 
conductivities are constant (model (5)).  We subtract Eq. 
(43) from Eq. (44) and solve for ~ .  This yields 

We integrate twice with respect to x and require that the 
electric field vanishes at inifinity. As the result we get 

dp(t,x) = ~  { ( D -  -D+)e ( t , x )  

1 l + .  

Suppose now that the ionic conductivity depends linearly 
on concentration (model (6)).  Then the potential is given 
by 

1 { 
d~(t,X)=F(u+ +u_ ) ( D - - D  ÷) lnc(t ,x) 

l 

+J-[i~dsCX(o.t,(x)+!~d~h,(x)]} 

(49) 

Next we investigate the steady sta~e. We let C = iim,~ ®c 
and define 

1 
f =  8o-- 7X(o, tl 

SO that 

x 

= m !  f(g..) d~= { %X nl i (1 )11 i f x e  (0. ll F(x) i f x ~  [0, l] 

Then, using partial integration, we find that 

C(x) - c(t, x) 
-I 

=t+J-~ f 4 ~ e x p [  (x-{~-v'r)2 ..~ d~d~" 

~ t  j • 

I 

./r2((x--~--"-v'r)4D7 exp[ , 
o 

oo l 

+ ._ /" I /'2((x-~-tvr) 

tl~ 0 

( x - ~ - t r r )  z F . ~  
X exp[ "4"D-~ "] {.{;) d~d'r 

+J-' [(x- 0,,lf J-(x- 0 +,,~111"=" 
=t2D fF(~)  exp - -  e 

o L ~ Jl"L 2/b; Jfl,.,,, de 
I 

t+j - 
= 2D f F ( ~ ) e x p [ ~  ~--v] 

o 

X(sign(.~ . ~-(x-@ +"/~1~ . .  ~,-or, L-F-~-- Z .j/,~ 
From this it is easy to see that the solution converges point- 
wise to the steady state. Now assume that x E [ 0,1]. If v> 0, 
then 

t+J - [lv~[ [ -- l + uf/~] 

For v < 0  we have 

t+J - [ tv~[ I t + u f f i Z I  
IC(x) -c ( t ,  x) t < _'-:-:-_ l expl - - - U  1 + e r l l ~ l l  

2 0 0 1  -\ 7L \ 2~ lDt / e l J  

Finally, if v= 0 it follows that 

t+J - [ l 
, c (~)  - c (  ,, ~) , <--~ e~V~-/-;,/ J 

Thus, the larger the value of I vl the faster the rate of 
convergence. 

It is clear from I~.q. (47) that the steady state solution is 
given by 

oo 

c(x) = co+,+r f ~ ' ~  e x p [ - ~ ]  
Jkl/41rD~" k q-u'r j 

1 [ 4 ~ ]  d : ] l l t r r + l - x  trr-x  
-2~ ~e--~, ~4D~ ] -e - - l ,~ /4D, ,1J  d~" (50) 

Expressions for the steady state potentials can be derived 
by substituting the steady state concentration given by Eq. 
(50) into Eqs. (48) and (49). 

3. An application 

3.1. Parameters 

In all our examples KOH is used as the electrolyte solution. 
The initial concentration is chosen to be 5 M. The ionic 
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Table I 
Electrochemical data 

Parameter Value Refs. 

(re=Is) 3.23X 10 -9 
A f~= (m=ll'I equiv) 1.17 x 10 -= 
t + 0.22 
Dr. "= (me/s) 2.07X 10 -9 
/~_~= (m=/s) 7,34 X I0 -9 
oS+ ~e ( I /Q m) 12.87 
oS~_ (l/f~ m) 45.63 
u+~ "e (m=mol/J s) 2.76X I0 -13 
u-rff e (mZmol/J s) 9.80× 10- =3 
F (C/equiv) 96500 

[8] 
[8] 
[9] 

diffusion coefficients, conductivities and mobilities for 5 M 
KOH electrolyte are derived from the integral diffusion coef- 
ficient and the equivalent conductance using the transference 
numbers. The values for these parameters are given in 
Table 1. 

The absolute value of the convection velocity I vl varies 
between 0 and 10- s m/s. The velocities used here can easily 
be shown to be reasonable and are in good consistency with 
even quite small temperature differences, 10 °C for instance, 
frequently occurring in electrochemical systems. 

Next we discuss the parameters describing the cell, the 
porous electrode and operating conditions that are given in 
Table 2. 

The cell parameters are chosen for electric-vehicle appli- 
cations, for example. Then it is convenient to assume a dis- 
charge time of about 3 h and a discharge current density of 
100 mA/cm 2 corresponding to a flux density of 0.01 mol/ 
m 2 s of OH- ions and a capacity of 300 mAh/cm 2 for the 
electrode. For instance, with a much-stndied metal hydride 
alloy MmNi3.sCoo.aAlo.4Mno.3 [ 10,11 ] having the capacity 
of about 250-270 mAh/g this means that the surface density 
of the metal hydride alloy is 1.1-1.2 g/cm 2. 

The thickness of the electrode and its porosity are related. 
It seems that the optimal value for the porosity is about 0.5. 
Then, if the electrode has 3 wt.% polytetrafluoroethylene 
(FIFE)  and I wt.% carbon as the electrically conducting 
binder material it follows that the electrode should be 3 mm 
thick. The thickness of the electrode is thus relatively high 
but it has been chosen keeping in mind sintering fabrication 
methods with which high discharge rates even for thick elec- 
trodes can be achieved. 

Table 2 I 
Cell parameters I 

Parameter Value 

J- (mol/mZs) 0.01 
I (m) 0.003 
L(m) 0.1 

0.5 
= (m) 0.001 

x= (m) 0.004 
Co (tool/I) 5 

With the thickness of 3 nun the capacity of the electrode 
is 1 Ah/cm 3. To balance this we can use an NiOOH electrode 
[ 12] or an oxygen electrode as the counter electrode, for 
example. 

In the case of the circular cell the total length of the tube, 
L, is chosen to be large compared with the length of the metal 
hydride electrode, ! = x2 -  xj. In this way the secondary cur- 
rent outside the metal hydride electrode is negligible. 

4. Results 

Applying the previously introduced mathematical models 
with the parameter values given above we computed concen- 
tration and potential profiles in various situations.Weempha- 
size that by potential we mean the potential in the electrolyte 
solution. Also, when using the phrases constant and linear 
ionic conductivities we refer to models (5) and (6),  respec- 
tively. In all cases below, the concentration and potential 
profiles only within the porous electrode are shown, that is, 
we are not concerned with the concentration and potential 
outside the metal hydride electrode. 

In Fig. 4 the time dependence of concentration with the 
closed cell model is presented. After the discharge time of 
3000 s no change in the concentration profile can be observed 
so that an approximate steady state has been reached. In this 
section we use the phrase steady state in this sense. The 
difference between the maximum and minimum concentra- 
tions inside the metal hydride electrode increases with dis- 
charge time. At the steady state a difference of 2.8 M has 
developed. The corresponding potential distributions with 
constant and linear ionic conductivities are shown in Figs. 5 
and 6, respectively. The potential difference between the ends 
of the metal hydride electrode decreases with discharge time. 
At the steady state the difference is 45 mV for the constant 
ionic conductivity model and 42 mV for the linear ionic 
conductivity model. 

To examine the possibility to change the concentration 
distribution and especially concentration differences inside 

x(m) xlo-' 

Fig, 4. Concentration in the closed cell as a function o f  a time. 
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Fig. 5. Potential in the cell as a function of time with constant ionic 
conductivifies. 
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Fig. 6. Potential in the closed cell as a function of time with linear ionic 
conductivities. 

If .0. 
3 

x-x1 I m) x 10 "~ 

Fig. 7. Concentration in the circular cell as a function of time with no 
convection. 

the electrode by using convection the two other cell models, 
i.e. circular cell and infinite tube, were studied. The physical 
validity and correspondence of these cases compared to the 

closed cell were first investigated by calculating the concen- 
tration and potential distributions without convection. The 
concentration distributions for the circular cell and the infinite 
tube are presented in Figs. 7 and 8, respectively. Comparing 
tl~cse to Fig. 4 we see that the shapes of the concentration 
distributions are practically equal in each case and that the 
difference between the maximum and minimum concentra- 
tions has remained. On the other hand, the maxima and min- 
ima of  the concentrations have become lower. This is due to 
the effect of the electrolyte reservoirs in the models. The main 
observation is however that the time needed to achieve a 
steady state is in both the circular cell and the infinite tube 
case beyond the assumed discharge time of 10 000 s and the 
times are now of the order of 5 × 105 and 5 x 106 s, respec- 
tively. This is an obvious consequence of the larger electro- 
lyte volumes. The potential distributions in the circular cell 
and the infinite tube cases are not included because they are 
naturally almost equal to those of  the closed cell case. 

The effect of convection on the concentration distributions 
at the steady state is shown in Figs. 9 and 10 with different 
convection velocities. With low convection velocities of  
+ 10 -~ m/ s  the differences between the maximum and min- 
imum concentrations are practically the same as in the cases 
without convection, but the maxima and minima of the cgn- 
centrations have become either lower or higher than without 
convection, depending on the direction of convection. With 
convection velocities of + 10- s m/ s  the shapes of the con- 
centration profiles and differences between maximum and 
minimum concentrations are already markedly changed. 
When the convection is against the flow of negative ions the 
shape of concentration in the electrode is still continuously 
decreasing, but with the convection in the other direction the 
shape has been changed much more remarkably, that is, the 
minimum of the concentration has moved ~owards the counter 
electrode. In either case the difference between the maximum 
and minimum concentrations has decreased to 1 M from 2.8 
M for the case without convection. With quite high convec- 
tion velocities of + 10- ~ m/s  the concentration profiles are 

a o:s , ;.5 ~ 2'.5 
x(m) xlo" 

Fig. 8. Concentration in the infinite tuhe as a function o, time with no 
convection. 
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Fig.  9.  S teady  s ta te  concen t ra t ion  in the c i r cu l a r  ce l l  for  d i f fe ren t  convec t ion  

velocities. 

76 

q 

3 

• (m) x 1 o "+ 
Fig. I0. Steady state concentration in the infinite tube for different convection 
velocities. 

further flattened, so that the difference between the maxima 
and minima is only 0.2 M. Also the changes in the shape of 
the concentration profiles observed with the velocities of 
+ 10 -6  m/s  are further strengthened. 

Note that in Fig. 10 the concentration at the down stream 
end of the metal hydride electrode in the infinite tube model 
is equal to 5 M, the initial concentration, when there is con- 
vection. This is due to the requirement of boundedness of 
solutions of the mass balance equations. In the circular cell 
case (Fig. 9) the down stream end concentration is pretty 
close to 5 M. 

The potential distributions at the steady state with different 
convection velocities in the cases of constant and linear ionic 
conductivities are presented in Figs. 11 and 12 for the infinite 
tube model. The results for the circular cell are not 'shown 
because they are practically equal to those of the infinite tube. 

In Fig. I I, where the constant ionic conductivity model 
was used, the potential distributions corresponding to low 
convection velocities of + 10 -~ m/s  are very close to the 
potential distribution without convection. On the other hand, 

#. :, ++o- 

i ; s -  

0.5 1 1.5 2 2.5 3 
• (m) , le"  

Fig. i I. Steady state potential in the infinite tube for diffegent convection 
velocities with constant ionic conductivities. 

with the linear model for ionic cooductivities, shown in Fig. 

12, these velocities cause noticeable differences. The poten- 

tial difference between the electrode ends changes from 46 
mV (no convection) to 37 mV (convection in the direction 
of negative ions) and to 71 mV (convection against the 
negative ions). This difference between Figs. 11 and 12 is 
easily explained by the concentration changes for velocities 
0 and + 10 -~ m/s  shown in Fig. 10 together with the linear 
ionic conductivity model. 

From Fig. 11 it can be seen that the potential difference 
between the ends of the metal hydride electrode increases 
from 45 mV (no convection) to 58 or to 65 mV with the 
convection velocity of 10 -6 m/s  along with or against the 
negative ions, respectively, when constant ionic condnctivi- 
ties are assumed. With the linear ionic condnctivities in Fig. 
12 the potential difference between the ends of the metal 
hydride electrode has changed from 46 to 50 mV or 79 mV 
when the convection is 10 -6  m/s  along with or against the 
negative ions, respectively. Again the direction of the con- 
vection affects the potential more when the linear ionic con- 
ductivity model is used. 

o . ~  . . . . .  • 

oom~  • l i r a  

o.o71- . ~o'-?m~ . . , ; . ;+~- ; " , , -  
X -lOa,-? m~ I t , -  x 

! . . . .  4 .  . 4 ~ * *  
o.ms I. - 1~P,-smm .~,,,'+ x ~ + + + + _+ 

I _ . 1 , - , .  , . ~ x  ~ + + . + ~ o o o o  
|°."t . . . .  

i~ " " i x  " I ' ÷ o  ° . " " " 
o ..Kv. • o o .o :.... - 

t 
??.-- 

o.o2 ~ o ° • " 

O O . o ~ , : ,  5 - , t  / + ; +'.s + + 

xlm) z,o.+ 
Fig. 12. Steady state potential in the infinite tube for different convection 
velocities with linear ionic conductivities. 
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With velocities of + 10 -5 m/s  the effect of the direction 
of the convection is very much decreased especially in the 
case of constant ionic conductivities as can be seen from Fig. 
11. The potential difference between the electrode ends has 
increased from 45 to about 69 mV regardless of the direction 
of convection. With the linear ionic conductivity model in 
Fig. 12 the potential difference has increased from 46 to about 
70 inV. 

5. Conclusions 

From the above results it is obvious that the concentration 
distributions cannot be ignored in thick porous electrodes. 
Our examples show that quite remarkable concentration gra- 
dients are possible in such electrodes. It was also observed 
that the time needed to reach the stcady state is much longer 
than what was expected. When electrolyte reservoirs were 
present, as in the models of circular cell and iniinite tube in 
this presentation, this time was beyond the supposed dis- 
charge time of 3 h. 

The concentration gradients can be affected by convection, 
if a suitable velocity is chosen. With high enough velocities 
(of the order of 10-5 m/s  in our examples) the concentration 
profiles can be flattened almost totally, while with low veloc- 
ities (of the order of 10 -7 m/s  in our examples) no effect 
on the difference between the maximum and minimum of 
concentrations is seen. 

Even though flat concentration profiles can be thought to 
be advantageous beca;~se of lower concentration maxima and 
therefore reduced corrosion, flat profiles at the same time 
generally correspond to higher potential gradients inside the 
electrode. Since the electrolyte potential has a clear, and in 
some circumstances even very crucial, effect on corrosion 
rate, the steep potential profiles are also undesirable. Thus it 
seems that in trying to extend the life time of a cell optimizing 
the concentration and potential profiles is of great importance. 

However, more attention should be paid to modelling the 
concentration dependence of the ionic conductivitie~. In this 
presentation only constant and linear models for the concen- 
tration dependence of ionic conductivities were used, because 
of the requirement of simplicity. Using these models, quite 
different results were obtained with lower velocities. With 
higher velocities the models gave almost identical results 
because the concentration diffei'ences in the electrode were 
very small. 

6. List ofsymbols  

concentration of negative and positive ions 
steady state concentration of negative and 
positive ions 
initial concentration of negative and positive ions 
effective integral diffusion coefficient 

D f r ° :  integral diffusion coefficient 
D + effective diffusion coefficient of positive ions 
D -  effective diffusion coefficient of negative ions 
Dr+ '~  diffusion coefficient of positive ions 
Dr_ tee diffusion coefficient of negative ions 
erf error function 
F Faraday's constant 
h e Heaviside step function with the step at x = 
j+  scalar flux density of positive ions 
j -  scalar flux density of negative ions 
J -  discharge current in flux density units 
l length of the porous electrode 
L length of the cell 
t time 
t + transference number of positive ions 
u + effective mobility of positive ions 
u -  effective mobility of negative ions 
uf. ~ mobility of positive ions 
uf_ ~ mobility of negative ions 
v scalar convection velocity of positive and 

negative ions 
x position 
x~ position of the left end of the porous electrode in 

the circular cell 
x2 position of the right end of the porous electrode 

in the circular cell 

Greek  symbols  

Xt characteristic function of the interval I 
8~ Dirac delta functional centered at x = ~: 
e porosity of the electrode material 

electrostatic potential 
A f~  equivalent conductance of the electrolyte 
cr + effective ionic conductivity of positive ions 
~r- effective ionic conductivity of negative ions 
o'f+ "~ ionic conductivity of positive ions 
¢rf_ "~e ionic conductivity of negative ions 
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